This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two simple graphs (with the same vertex set): If <. V , E >. and <. V , F >. are simple graphs, then <. V , E u. F >. is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrun.g | |- ( ph -> G e. USGraph ) |
|
| usgrun.h | |- ( ph -> H e. USGraph ) |
||
| usgrun.e | |- E = ( iEdg ` G ) |
||
| usgrun.f | |- F = ( iEdg ` H ) |
||
| usgrun.vg | |- V = ( Vtx ` G ) |
||
| usgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
||
| usgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
||
| Assertion | usgrunop | |- ( ph -> <. V , ( E u. F ) >. e. UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrun.g | |- ( ph -> G e. USGraph ) |
|
| 2 | usgrun.h | |- ( ph -> H e. USGraph ) |
|
| 3 | usgrun.e | |- E = ( iEdg ` G ) |
|
| 4 | usgrun.f | |- F = ( iEdg ` H ) |
|
| 5 | usgrun.vg | |- V = ( Vtx ` G ) |
|
| 6 | usgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
|
| 7 | usgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
|
| 8 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 9 | 1 8 | syl | |- ( ph -> G e. UMGraph ) |
| 10 | usgrumgr | |- ( H e. USGraph -> H e. UMGraph ) |
|
| 11 | 2 10 | syl | |- ( ph -> H e. UMGraph ) |
| 12 | 9 11 3 4 5 6 7 | umgrunop | |- ( ph -> <. V , ( E u. F ) >. e. UMGraph ) |