This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two simple graphs (with the same vertex set): If <. V , E >. and <. V , F >. are simple graphs, then <. V , E u. F >. is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| usgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ USGraph ) | ||
| usgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| usgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | ||
| usgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| usgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| usgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | ||
| Assertion | usgrunop | ⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| 2 | usgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ USGraph ) | |
| 3 | usgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 4 | usgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | |
| 5 | usgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 6 | usgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 7 | usgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | |
| 8 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) |
| 10 | usgrumgr | ⊢ ( 𝐻 ∈ USGraph → 𝐻 ∈ UMGraph ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐻 ∈ UMGraph ) |
| 12 | 9 11 3 4 5 6 7 | umgrunop | ⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ UMGraph ) |