This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two multigraphs (with the same vertex set): If <. V , E >. and <. V , F >. are multigraphs, then <. V , E u. F >. is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgrun.g | |- ( ph -> G e. UMGraph ) |
|
| umgrun.h | |- ( ph -> H e. UMGraph ) |
||
| umgrun.e | |- E = ( iEdg ` G ) |
||
| umgrun.f | |- F = ( iEdg ` H ) |
||
| umgrun.vg | |- V = ( Vtx ` G ) |
||
| umgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
||
| umgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
||
| Assertion | umgrunop | |- ( ph -> <. V , ( E u. F ) >. e. UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrun.g | |- ( ph -> G e. UMGraph ) |
|
| 2 | umgrun.h | |- ( ph -> H e. UMGraph ) |
|
| 3 | umgrun.e | |- E = ( iEdg ` G ) |
|
| 4 | umgrun.f | |- F = ( iEdg ` H ) |
|
| 5 | umgrun.vg | |- V = ( Vtx ` G ) |
|
| 6 | umgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
|
| 7 | umgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
|
| 8 | opex | |- <. V , ( E u. F ) >. e. _V |
|
| 9 | 8 | a1i | |- ( ph -> <. V , ( E u. F ) >. e. _V ) |
| 10 | 5 | fvexi | |- V e. _V |
| 11 | 3 | fvexi | |- E e. _V |
| 12 | 4 | fvexi | |- F e. _V |
| 13 | 11 12 | unex | |- ( E u. F ) e. _V |
| 14 | 10 13 | pm3.2i | |- ( V e. _V /\ ( E u. F ) e. _V ) |
| 15 | opvtxfv | |- ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( Vtx ` <. V , ( E u. F ) >. ) = V ) |
|
| 16 | 14 15 | mp1i | |- ( ph -> ( Vtx ` <. V , ( E u. F ) >. ) = V ) |
| 17 | opiedgfv | |- ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) ) |
|
| 18 | 14 17 | mp1i | |- ( ph -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) ) |
| 19 | 1 2 3 4 5 6 7 9 16 18 | umgrun | |- ( ph -> <. V , ( E u. F ) >. e. UMGraph ) |