This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| Assertion | usgrnloop | |- ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| 2 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 3 | 1 | umgrnloop | |- ( G e. UMGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) ) |
| 4 | 2 3 | syl | |- ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) ) |