This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices 0 , 1 , 2 , 3 , 4 of the graph G = <. V , E >. . (Contributed by AV, 12-Jan-2020) (Revised by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl.v | |- V = ( 0 ... 4 ) |
|
| usgrexmpl.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } "> |
||
| usgrexmpl.g | |- G = <. V , E >. |
||
| Assertion | usgrexmplvtx | |- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl.v | |- V = ( 0 ... 4 ) |
|
| 2 | usgrexmpl.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } "> |
|
| 3 | usgrexmpl.g | |- G = <. V , E >. |
|
| 4 | 1 2 3 | usgrexmpllem | |- ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) |
| 5 | id | |- ( ( Vtx ` G ) = V -> ( Vtx ` G ) = V ) |
|
| 6 | fz0to4untppr | |- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
|
| 7 | 1 6 | eqtri | |- V = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
| 8 | 5 7 | eqtrdi | |- ( ( Vtx ` G ) = V -> ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) |
| 9 | 8 | adantr | |- ( ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) -> ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) |
| 10 | 4 9 | ax-mp | |- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |