This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for usgrexmpl . (Contributed by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl.v | |- V = ( 0 ... 4 ) |
|
| usgrexmpl.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } "> |
||
| usgrexmpl.g | |- G = <. V , E >. |
||
| Assertion | usgrexmpllem | |- ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl.v | |- V = ( 0 ... 4 ) |
|
| 2 | usgrexmpl.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } "> |
|
| 3 | usgrexmpl.g | |- G = <. V , E >. |
|
| 4 | 1 | ovexi | |- V e. _V |
| 5 | s4cli | |- <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } "> e. Word _V |
|
| 6 | 5 | elexi | |- <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } "> e. _V |
| 7 | 2 6 | eqeltri | |- E e. _V |
| 8 | opvtxfv | |- ( ( V e. _V /\ E e. _V ) -> ( Vtx ` <. V , E >. ) = V ) |
|
| 9 | opiedgfv | |- ( ( V e. _V /\ E e. _V ) -> ( iEdg ` <. V , E >. ) = E ) |
|
| 10 | 8 9 | jca | |- ( ( V e. _V /\ E e. _V ) -> ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) ) |
| 11 | 4 7 10 | mp2an | |- ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) |
| 12 | 3 | fveq2i | |- ( Vtx ` G ) = ( Vtx ` <. V , E >. ) |
| 13 | 12 | eqeq1i | |- ( ( Vtx ` G ) = V <-> ( Vtx ` <. V , E >. ) = V ) |
| 14 | 3 | fveq2i | |- ( iEdg ` G ) = ( iEdg ` <. V , E >. ) |
| 15 | 14 | eqeq1i | |- ( ( iEdg ` G ) = E <-> ( iEdg ` <. V , E >. ) = E ) |
| 16 | 13 15 | anbi12i | |- ( ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) <-> ( ( Vtx ` <. V , E >. ) = V /\ ( iEdg ` <. V , E >. ) = E ) ) |
| 17 | 11 16 | mpbir | |- ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) |