This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices 0 , 1 , 2 , 3 , 4 of the graph G = <. V , E >. . (Contributed by AV, 12-Jan-2020) (Revised by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl.v | ⊢ 𝑉 = ( 0 ... 4 ) | |
| usgrexmpl.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 | ||
| usgrexmpl.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | ||
| Assertion | usgrexmplvtx | ⊢ ( Vtx ‘ 𝐺 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl.v | ⊢ 𝑉 = ( 0 ... 4 ) | |
| 2 | usgrexmpl.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 | |
| 3 | usgrexmpl.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | |
| 4 | 1 2 3 | usgrexmpllem | ⊢ ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) |
| 5 | id | ⊢ ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 6 | fz0to4untppr | ⊢ ( 0 ... 4 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) | |
| 7 | 1 6 | eqtri | ⊢ 𝑉 = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |
| 8 | 5 7 | eqtrdi | ⊢ ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( Vtx ‘ 𝐺 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → ( Vtx ‘ 𝐺 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ) |
| 10 | 4 9 | ax-mp | ⊢ ( Vtx ‘ 𝐺 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |