This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 28-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrbi.x | ⊢ 𝑋 ∈ 𝑉 | |
| upgrbi.y | ⊢ 𝑌 ∈ 𝑉 | ||
| Assertion | upgrbi | ⊢ { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrbi.x | ⊢ 𝑋 ∈ 𝑉 | |
| 2 | upgrbi.y | ⊢ 𝑌 ∈ 𝑉 | |
| 3 | prssi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) | |
| 4 | 1 2 3 | mp2an | ⊢ { 𝑋 , 𝑌 } ⊆ 𝑉 |
| 5 | prex | ⊢ { 𝑋 , 𝑌 } ∈ V | |
| 6 | 5 | elpw | ⊢ ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ↔ { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 7 | 4 6 | mpbir | ⊢ { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 |
| 8 | 1 | elexi | ⊢ 𝑋 ∈ V |
| 9 | 8 | prnz | ⊢ { 𝑋 , 𝑌 } ≠ ∅ |
| 10 | eldifsn | ⊢ ( { 𝑋 , 𝑌 } ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ∧ { 𝑋 , 𝑌 } ≠ ∅ ) ) | |
| 11 | 7 9 10 | mpbir2an | ⊢ { 𝑋 , 𝑌 } ∈ ( 𝒫 𝑉 ∖ { ∅ } ) |
| 12 | hashprlei | ⊢ ( { 𝑋 , 𝑌 } ∈ Fin ∧ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 ) | |
| 13 | 12 | simpri | ⊢ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 |
| 14 | fveq2 | ⊢ ( 𝑥 = { 𝑋 , 𝑌 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑋 , 𝑌 } ) ) | |
| 15 | 14 | breq1d | ⊢ ( 𝑥 = { 𝑋 , 𝑌 } → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 ) ) |
| 16 | 15 | elrab | ⊢ ( { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( { 𝑋 , 𝑌 } ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ { 𝑋 , 𝑌 } ) ≤ 2 ) ) |
| 17 | 11 13 16 | mpbir2an | ⊢ { 𝑋 , 𝑌 } ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } |