This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | upgrop | |- ( G e. UPGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | upgrf | |- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 4 | fvex | |- ( Vtx ` G ) e. _V |
|
| 5 | fvex | |- ( iEdg ` G ) e. _V |
|
| 6 | 4 5 | pm3.2i | |- ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) |
| 7 | opex | |- <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V |
|
| 8 | eqid | |- ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
|
| 9 | eqid | |- ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
|
| 10 | 8 9 | isupgr | |- ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) : dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) --> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 11 | 7 10 | mp1i | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) : dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) --> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 12 | opiedgfv | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` G ) ) |
|
| 13 | 12 | dmeqd | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = dom ( iEdg ` G ) ) |
| 14 | opvtxfv | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` G ) ) |
|
| 15 | 14 | pweqd | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ~P ( Vtx ` G ) ) |
| 16 | 15 | difeq1d | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) = ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 17 | 16 | rabeqdv | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } = { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 18 | 12 13 17 | feq123d | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) : dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) --> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 19 | 11 18 | bitrd | |- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 20 | 6 19 | mp1i | |- ( G e. UPGraph -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 21 | 3 20 | mpbird | |- ( G e. UPGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph ) |