This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a simple path are distinct, so the vertex function is one-to-one. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 5-Jun-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spthdifv | |- ( F ( SPaths ` G ) P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 2 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | 3 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 5 | df-f1 | |- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) ) |
|
| 6 | 5 | simplbi2 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) ) |
| 7 | 2 4 6 | 3syl | |- ( F ( Trails ` G ) P -> ( Fun `' P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) ) |
| 8 | 7 | imp | |- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| 9 | 1 8 | sylbi | |- ( F ( SPaths ` G ) P -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |