This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssrexf.1 | |- F/_ x A |
|
| ssrexf.2 | |- F/_ x B |
||
| Assertion | ssrmof | |- ( A C_ B -> ( E* x e. B ph -> E* x e. A ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexf.1 | |- F/_ x A |
|
| 2 | ssrexf.2 | |- F/_ x B |
|
| 3 | 1 2 | dfssf | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
| 4 | 3 | biimpi | |- ( A C_ B -> A. x ( x e. A -> x e. B ) ) |
| 5 | pm3.45 | |- ( ( x e. A -> x e. B ) -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
|
| 6 | 5 | alimi | |- ( A. x ( x e. A -> x e. B ) -> A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
| 7 | moim | |- ( A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) -> ( E* x ( x e. B /\ ph ) -> E* x ( x e. A /\ ph ) ) ) |
|
| 8 | 4 6 7 | 3syl | |- ( A C_ B -> ( E* x ( x e. B /\ ph ) -> E* x ( x e. A /\ ph ) ) ) |
| 9 | df-rmo | |- ( E* x e. B ph <-> E* x ( x e. B /\ ph ) ) |
|
| 10 | df-rmo | |- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
|
| 11 | 8 9 10 | 3imtr4g | |- ( A C_ B -> ( E* x e. B ph -> E* x e. A ph ) ) |