This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a subgraph: If S is a subgraph of G , its vertices are also vertices of G , and its edges are also edges of G . (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgrprop3.v | |- V = ( Vtx ` S ) |
|
| subgrprop3.a | |- A = ( Vtx ` G ) |
||
| subgrprop3.e | |- E = ( Edg ` S ) |
||
| subgrprop3.b | |- B = ( Edg ` G ) |
||
| Assertion | subgrprop3 | |- ( S SubGraph G -> ( V C_ A /\ E C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrprop3.v | |- V = ( Vtx ` S ) |
|
| 2 | subgrprop3.a | |- A = ( Vtx ` G ) |
|
| 3 | subgrprop3.e | |- E = ( Edg ` S ) |
|
| 4 | subgrprop3.b | |- B = ( Edg ` G ) |
|
| 5 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 6 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 7 | 1 2 5 6 3 | subgrprop2 | |- ( S SubGraph G -> ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ E C_ ~P V ) ) |
| 8 | 3simpa | |- ( ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ E C_ ~P V ) -> ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) |
|
| 9 | 7 8 | syl | |- ( S SubGraph G -> ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) |
| 10 | simprl | |- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> V C_ A ) |
|
| 11 | rnss | |- ( ( iEdg ` S ) C_ ( iEdg ` G ) -> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) |
|
| 12 | 11 | ad2antll | |- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) |
| 13 | subgrv | |- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
|
| 14 | edgval | |- ( Edg ` S ) = ran ( iEdg ` S ) |
|
| 15 | 14 | a1i | |- ( ( S e. _V /\ G e. _V ) -> ( Edg ` S ) = ran ( iEdg ` S ) ) |
| 16 | 3 15 | eqtrid | |- ( ( S e. _V /\ G e. _V ) -> E = ran ( iEdg ` S ) ) |
| 17 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 18 | 17 | a1i | |- ( ( S e. _V /\ G e. _V ) -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 19 | 4 18 | eqtrid | |- ( ( S e. _V /\ G e. _V ) -> B = ran ( iEdg ` G ) ) |
| 20 | 16 19 | sseq12d | |- ( ( S e. _V /\ G e. _V ) -> ( E C_ B <-> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) ) |
| 21 | 13 20 | syl | |- ( S SubGraph G -> ( E C_ B <-> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) ) |
| 22 | 21 | adantr | |- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> ( E C_ B <-> ran ( iEdg ` S ) C_ ran ( iEdg ` G ) ) ) |
| 23 | 12 22 | mpbird | |- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> E C_ B ) |
| 24 | 10 23 | jca | |- ( ( S SubGraph G /\ ( V C_ A /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) -> ( V C_ A /\ E C_ B ) ) |
| 25 | 9 24 | mpdan | |- ( S SubGraph G -> ( V C_ A /\ E C_ B ) ) |