This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of hypergraphs is a local isomorphism between the two graphs. (Contributed by AV, 2-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrimgrlim | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F e. ( G GraphLocIso H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 3 | 1 2 | grimf1o | |- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 4 | 3 | 3ad2ant3 | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 5 | simpl1 | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> G e. UHGraph ) |
|
| 6 | simpl3 | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> F e. ( G GraphIso H ) ) |
|
| 7 | 1 | clnbgrssvtx | |- ( G ClNeighbVtx v ) C_ ( Vtx ` G ) |
| 8 | 7 | a1i | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) |
| 9 | 1 | uhgrimisgrgric | |- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ ( G ClNeighbVtx v ) C_ ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( F " ( G ClNeighbVtx v ) ) ) ) |
| 10 | 5 6 8 9 | syl3anc | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( F " ( G ClNeighbVtx v ) ) ) ) |
| 11 | df-3an | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) <-> ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) ) |
|
| 12 | 1 | clnbgrgrim | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( H ClNeighbVtx ( F ` v ) ) = ( F " ( G ClNeighbVtx v ) ) ) |
| 13 | 11 12 | sylanb | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( H ClNeighbVtx ( F ` v ) ) = ( F " ( G ClNeighbVtx v ) ) ) |
| 14 | 13 | oveq2d | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) = ( H ISubGr ( F " ( G ClNeighbVtx v ) ) ) ) |
| 15 | 10 14 | breqtrrd | |- ( ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) /\ v e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) |
| 16 | 15 | ralrimiva | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) |
| 17 | 1 2 | isgrlim | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
| 18 | 4 16 17 | mpbir2and | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> F e. ( G GraphLocIso H ) ) |