This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a hypergraph with no vertices (the null graph) is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 7-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgr0v0e.v | |- V = ( Vtx ` G ) |
|
| uhgr0v0e.e | |- E = ( Edg ` G ) |
||
| Assertion | uhgr0vsize0 | |- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgr0v0e.v | |- V = ( Vtx ` G ) |
|
| 2 | uhgr0v0e.e | |- E = ( Edg ` G ) |
|
| 3 | 1 2 | uhgr0v0e | |- ( ( G e. UHGraph /\ V = (/) ) -> E = (/) ) |
| 4 | 3 | ex | |- ( G e. UHGraph -> ( V = (/) -> E = (/) ) ) |
| 5 | 1 | fvexi | |- V e. _V |
| 6 | hasheq0 | |- ( V e. _V -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( # ` V ) = 0 <-> V = (/) ) |
| 8 | 2 | fvexi | |- E e. _V |
| 9 | hasheq0 | |- ( E e. _V -> ( ( # ` E ) = 0 <-> E = (/) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( # ` E ) = 0 <-> E = (/) ) |
| 11 | 4 7 10 | 3imtr4g | |- ( G e. UHGraph -> ( ( # ` V ) = 0 -> ( # ` E ) = 0 ) ) |
| 12 | 11 | imp | |- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = 0 ) |