This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proposition 7.48(1) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz7.48.1 | |- F Fn On |
|
| Assertion | tz7.48-1 | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ran F C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.48.1 | |- F Fn On |
|
| 2 | vex | |- y e. _V |
|
| 3 | 2 | elrn2 | |- ( y e. ran F <-> E. x <. x , y >. e. F ) |
| 4 | vex | |- x e. _V |
|
| 5 | 4 2 | opeldm | |- ( <. x , y >. e. F -> x e. dom F ) |
| 6 | 1 | fndmi | |- dom F = On |
| 7 | 5 6 | eleqtrdi | |- ( <. x , y >. e. F -> x e. On ) |
| 8 | 7 | ancri | |- ( <. x , y >. e. F -> ( x e. On /\ <. x , y >. e. F ) ) |
| 9 | fnopfvb | |- ( ( F Fn On /\ x e. On ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
|
| 10 | 1 9 | mpan | |- ( x e. On -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
| 11 | 10 | pm5.32i | |- ( ( x e. On /\ ( F ` x ) = y ) <-> ( x e. On /\ <. x , y >. e. F ) ) |
| 12 | 8 11 | sylibr | |- ( <. x , y >. e. F -> ( x e. On /\ ( F ` x ) = y ) ) |
| 13 | 12 | eximi | |- ( E. x <. x , y >. e. F -> E. x ( x e. On /\ ( F ` x ) = y ) ) |
| 14 | 3 13 | sylbi | |- ( y e. ran F -> E. x ( x e. On /\ ( F ` x ) = y ) ) |
| 15 | nfra1 | |- F/ x A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) |
|
| 16 | nfv | |- F/ x y e. A |
|
| 17 | rsp | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
|
| 18 | eldifi | |- ( ( F ` x ) e. ( A \ ( F " x ) ) -> ( F ` x ) e. A ) |
|
| 19 | eleq1 | |- ( ( F ` x ) = y -> ( ( F ` x ) e. A <-> y e. A ) ) |
|
| 20 | 18 19 | syl5ibcom | |- ( ( F ` x ) e. ( A \ ( F " x ) ) -> ( ( F ` x ) = y -> y e. A ) ) |
| 21 | 20 | imim2i | |- ( ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) |
| 22 | 21 | impd | |- ( ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
| 23 | 17 22 | syl | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
| 24 | 15 16 23 | exlimd | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( E. x ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
| 25 | 14 24 | syl5 | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( y e. ran F -> y e. A ) ) |
| 26 | 25 | ssrdv | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ran F C_ A ) |