This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proposition 7.48(2) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997) (Revised by David Abernethy, 5-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz7.48.1 | |- F Fn On |
|
| Assertion | tz7.48-2 | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> Fun `' F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.48.1 | |- F Fn On |
|
| 2 | ssid | |- On C_ On |
|
| 3 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 4 | 3 | ancoms | |- ( ( y e. x /\ x e. On ) -> y e. On ) |
| 5 | 1 | fndmi | |- dom F = On |
| 6 | 5 | eleq2i | |- ( y e. dom F <-> y e. On ) |
| 7 | fnfun | |- ( F Fn On -> Fun F ) |
|
| 8 | 1 7 | ax-mp | |- Fun F |
| 9 | funfvima | |- ( ( Fun F /\ y e. dom F ) -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) |
|
| 10 | 8 9 | mpan | |- ( y e. dom F -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) |
| 11 | 10 | impcom | |- ( ( y e. x /\ y e. dom F ) -> ( F ` y ) e. ( F " x ) ) |
| 12 | eleq1a | |- ( ( F ` y ) e. ( F " x ) -> ( ( F ` x ) = ( F ` y ) -> ( F ` x ) e. ( F " x ) ) ) |
|
| 13 | eldifn | |- ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) e. ( F " x ) ) |
|
| 14 | 12 13 | nsyli | |- ( ( F ` y ) e. ( F " x ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 15 | 11 14 | syl | |- ( ( y e. x /\ y e. dom F ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 16 | 6 15 | sylan2br | |- ( ( y e. x /\ y e. On ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 17 | 4 16 | syldan | |- ( ( y e. x /\ x e. On ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 18 | 17 | expimpd | |- ( y e. x -> ( ( x e. On /\ ( F ` x ) e. ( A \ ( F " x ) ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 19 | 18 | com12 | |- ( ( x e. On /\ ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) |
| 20 | 19 | ralrimiv | |- ( ( x e. On /\ ( F ` x ) e. ( A \ ( F " x ) ) ) -> A. y e. x -. ( F ` x ) = ( F ` y ) ) |
| 21 | 20 | ralimiaa | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) |
| 22 | 1 | tz7.48lem | |- ( ( On C_ On /\ A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) -> Fun `' ( F |` On ) ) |
| 23 | 2 21 22 | sylancr | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> Fun `' ( F |` On ) ) |
| 24 | fnrel | |- ( F Fn On -> Rel F ) |
|
| 25 | 1 24 | ax-mp | |- Rel F |
| 26 | 5 | eqimssi | |- dom F C_ On |
| 27 | relssres | |- ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) |
|
| 28 | 25 26 27 | mp2an | |- ( F |` On ) = F |
| 29 | 28 | cnveqi | |- `' ( F |` On ) = `' F |
| 30 | 29 | funeqi | |- ( Fun `' ( F |` On ) <-> Fun `' F ) |
| 31 | 23 30 | sylib | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> Fun `' F ) |