This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the function mapping a uniform structure to a uniform space. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tus | |- toUnifSp = ( u e. U. ran UnifOn |-> ( { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` u ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctus | |- toUnifSp |
|
| 1 | vu | |- u |
|
| 2 | cust | |- UnifOn |
|
| 3 | 2 | crn | |- ran UnifOn |
| 4 | 3 | cuni | |- U. ran UnifOn |
| 5 | cbs | |- Base |
|
| 6 | cnx | |- ndx |
|
| 7 | 6 5 | cfv | |- ( Base ` ndx ) |
| 8 | 1 | cv | |- u |
| 9 | 8 | cuni | |- U. u |
| 10 | 9 | cdm | |- dom U. u |
| 11 | 7 10 | cop | |- <. ( Base ` ndx ) , dom U. u >. |
| 12 | cunif | |- UnifSet |
|
| 13 | 6 12 | cfv | |- ( UnifSet ` ndx ) |
| 14 | 13 8 | cop | |- <. ( UnifSet ` ndx ) , u >. |
| 15 | 11 14 | cpr | |- { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } |
| 16 | csts | |- sSet |
|
| 17 | cts | |- TopSet |
|
| 18 | 6 17 | cfv | |- ( TopSet ` ndx ) |
| 19 | cutop | |- unifTop |
|
| 20 | 8 19 | cfv | |- ( unifTop ` u ) |
| 21 | 18 20 | cop | |- <. ( TopSet ` ndx ) , ( unifTop ` u ) >. |
| 22 | 15 21 16 | co | |- ( { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` u ) >. ) |
| 23 | 1 4 22 | cmpt | |- ( u e. U. ran UnifOn |-> ( { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` u ) >. ) ) |
| 24 | 0 23 | wceq | |- toUnifSp = ( u e. U. ran UnifOn |-> ( { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` u ) >. ) ) |