This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istsr.1 | |- X = dom R |
|
| Assertion | tsrlemax | |- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A R if ( B R C , C , B ) <-> ( A R B \/ A R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istsr.1 | |- X = dom R |
|
| 2 | breq2 | |- ( C = if ( B R C , C , B ) -> ( A R C <-> A R if ( B R C , C , B ) ) ) |
|
| 3 | 2 | bibi1d | |- ( C = if ( B R C , C , B ) -> ( ( A R C <-> ( A R B \/ A R C ) ) <-> ( A R if ( B R C , C , B ) <-> ( A R B \/ A R C ) ) ) ) |
| 4 | breq2 | |- ( B = if ( B R C , C , B ) -> ( A R B <-> A R if ( B R C , C , B ) ) ) |
|
| 5 | 4 | bibi1d | |- ( B = if ( B R C , C , B ) -> ( ( A R B <-> ( A R B \/ A R C ) ) <-> ( A R if ( B R C , C , B ) <-> ( A R B \/ A R C ) ) ) ) |
| 6 | olc | |- ( A R C -> ( A R B \/ A R C ) ) |
|
| 7 | eqid | |- dom R = dom R |
|
| 8 | 7 | istsr | |- ( R e. TosetRel <-> ( R e. PosetRel /\ ( dom R X. dom R ) C_ ( R u. `' R ) ) ) |
| 9 | 8 | simplbi | |- ( R e. TosetRel -> R e. PosetRel ) |
| 10 | pstr | |- ( ( R e. PosetRel /\ A R B /\ B R C ) -> A R C ) |
|
| 11 | 10 | 3expib | |- ( R e. PosetRel -> ( ( A R B /\ B R C ) -> A R C ) ) |
| 12 | 9 11 | syl | |- ( R e. TosetRel -> ( ( A R B /\ B R C ) -> A R C ) ) |
| 13 | 12 | adantr | |- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
| 14 | 13 | expdimp | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R B ) -> ( B R C -> A R C ) ) |
| 15 | 14 | impancom | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( A R B -> A R C ) ) |
| 16 | idd | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( A R C -> A R C ) ) |
|
| 17 | 15 16 | jaod | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( ( A R B \/ A R C ) -> A R C ) ) |
| 18 | 6 17 | impbid2 | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( A R C <-> ( A R B \/ A R C ) ) ) |
| 19 | orc | |- ( A R B -> ( A R B \/ A R C ) ) |
|
| 20 | idd | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( A R B -> A R B ) ) |
|
| 21 | 1 | tsrlin | |- ( ( R e. TosetRel /\ B e. X /\ C e. X ) -> ( B R C \/ C R B ) ) |
| 22 | 21 | 3adant3r1 | |- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B R C \/ C R B ) ) |
| 23 | 22 | orcanai | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> C R B ) |
| 24 | pstr | |- ( ( R e. PosetRel /\ A R C /\ C R B ) -> A R B ) |
|
| 25 | 24 | 3expib | |- ( R e. PosetRel -> ( ( A R C /\ C R B ) -> A R B ) ) |
| 26 | 9 25 | syl | |- ( R e. TosetRel -> ( ( A R C /\ C R B ) -> A R B ) ) |
| 27 | 26 | adantr | |- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R C /\ C R B ) -> A R B ) ) |
| 28 | 27 | expdimp | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R C ) -> ( C R B -> A R B ) ) |
| 29 | 28 | impancom | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ C R B ) -> ( A R C -> A R B ) ) |
| 30 | 23 29 | syldan | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( A R C -> A R B ) ) |
| 31 | 20 30 | jaod | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( ( A R B \/ A R C ) -> A R B ) ) |
| 32 | 19 31 | impbid2 | |- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( A R B <-> ( A R B \/ A R C ) ) ) |
| 33 | 3 5 18 32 | ifbothda | |- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A R if ( B R C , C , B ) <-> ( A R B \/ A R C ) ) ) |