This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istsr.1 | |- X = dom R |
|
| Assertion | tsrlin | |- ( ( R e. TosetRel /\ A e. X /\ B e. X ) -> ( A R B \/ B R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istsr.1 | |- X = dom R |
|
| 2 | 1 | istsr2 | |- ( R e. TosetRel <-> ( R e. PosetRel /\ A. x e. X A. y e. X ( x R y \/ y R x ) ) ) |
| 3 | 2 | simprbi | |- ( R e. TosetRel -> A. x e. X A. y e. X ( x R y \/ y R x ) ) |
| 4 | breq1 | |- ( x = A -> ( x R y <-> A R y ) ) |
|
| 5 | breq2 | |- ( x = A -> ( y R x <-> y R A ) ) |
|
| 6 | 4 5 | orbi12d | |- ( x = A -> ( ( x R y \/ y R x ) <-> ( A R y \/ y R A ) ) ) |
| 7 | breq2 | |- ( y = B -> ( A R y <-> A R B ) ) |
|
| 8 | breq1 | |- ( y = B -> ( y R A <-> B R A ) ) |
|
| 9 | 7 8 | orbi12d | |- ( y = B -> ( ( A R y \/ y R A ) <-> ( A R B \/ B R A ) ) ) |
| 10 | 6 9 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( x R y \/ y R x ) -> ( A R B \/ B R A ) ) ) |
| 11 | 3 10 | syl5com | |- ( R e. TosetRel -> ( ( A e. X /\ B e. X ) -> ( A R B \/ B R A ) ) ) |
| 12 | 11 | 3impib | |- ( ( R e. TosetRel /\ A e. X /\ B e. X ) -> ( A R B \/ B R A ) ) |