This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpprceq3 | |- ( -. ( C e. _V /\ C =/= B ) -> { A , B , C } = { A , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor | |- ( -. ( C e. _V /\ C =/= B ) <-> ( -. C e. _V \/ -. C =/= B ) ) |
|
| 2 | prprc2 | |- ( -. C e. _V -> { B , C } = { B } ) |
|
| 3 | 2 | uneq1d | |- ( -. C e. _V -> ( { B , C } u. { A } ) = ( { B } u. { A } ) ) |
| 4 | tprot | |- { A , B , C } = { B , C , A } |
|
| 5 | df-tp | |- { B , C , A } = ( { B , C } u. { A } ) |
|
| 6 | 4 5 | eqtri | |- { A , B , C } = ( { B , C } u. { A } ) |
| 7 | prcom | |- { A , B } = { B , A } |
|
| 8 | df-pr | |- { B , A } = ( { B } u. { A } ) |
|
| 9 | 7 8 | eqtri | |- { A , B } = ( { B } u. { A } ) |
| 10 | 3 6 9 | 3eqtr4g | |- ( -. C e. _V -> { A , B , C } = { A , B } ) |
| 11 | nne | |- ( -. C =/= B <-> C = B ) |
|
| 12 | tppreq3 | |- ( B = C -> { A , B , C } = { A , B } ) |
|
| 13 | 12 | eqcoms | |- ( C = B -> { A , B , C } = { A , B } ) |
| 14 | 11 13 | sylbi | |- ( -. C =/= B -> { A , B , C } = { A , B } ) |
| 15 | 10 14 | jaoi | |- ( ( -. C e. _V \/ -. C =/= B ) -> { A , B , C } = { A , B } ) |
| 16 | 1 15 | sylbi | |- ( -. ( C e. _V /\ C =/= B ) -> { A , B , C } = { A , B } ) |