This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | toponsspwpw | |- ( TopOn ` A ) C_ ~P ~P A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssab | |- { y e. Top | A = U. y } C_ { y | A = U. y } |
|
| 2 | eqcom | |- ( A = U. y <-> U. y = A ) |
|
| 3 | 2 | abbii | |- { y | A = U. y } = { y | U. y = A } |
| 4 | 1 3 | sseqtri | |- { y e. Top | A = U. y } C_ { y | U. y = A } |
| 5 | pwpwssunieq | |- { y | U. y = A } C_ ~P ~P A |
|
| 6 | 4 5 | sstri | |- { y e. Top | A = U. y } C_ ~P ~P A |
| 7 | pwexg | |- ( A e. _V -> ~P A e. _V ) |
|
| 8 | 7 | pwexd | |- ( A e. _V -> ~P ~P A e. _V ) |
| 9 | ssexg | |- ( ( { y e. Top | A = U. y } C_ ~P ~P A /\ ~P ~P A e. _V ) -> { y e. Top | A = U. y } e. _V ) |
|
| 10 | 6 8 9 | sylancr | |- ( A e. _V -> { y e. Top | A = U. y } e. _V ) |
| 11 | eqeq1 | |- ( x = A -> ( x = U. y <-> A = U. y ) ) |
|
| 12 | 11 | rabbidv | |- ( x = A -> { y e. Top | x = U. y } = { y e. Top | A = U. y } ) |
| 13 | df-topon | |- TopOn = ( x e. _V |-> { y e. Top | x = U. y } ) |
|
| 14 | 12 13 | fvmptg | |- ( ( A e. _V /\ { y e. Top | A = U. y } e. _V ) -> ( TopOn ` A ) = { y e. Top | A = U. y } ) |
| 15 | 10 14 | mpdan | |- ( A e. _V -> ( TopOn ` A ) = { y e. Top | A = U. y } ) |
| 16 | 15 6 | eqsstrdi | |- ( A e. _V -> ( TopOn ` A ) C_ ~P ~P A ) |
| 17 | fvprc | |- ( -. A e. _V -> ( TopOn ` A ) = (/) ) |
|
| 18 | 0ss | |- (/) C_ ~P ~P A |
|
| 19 | 17 18 | eqsstrdi | |- ( -. A e. _V -> ( TopOn ` A ) C_ ~P ~P A ) |
| 20 | 16 19 | pm2.61i | |- ( TopOn ` A ) C_ ~P ~P A |