This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of TopOn is the universal class _V . (Contributed by BJ, 29-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmtopon | |- dom TopOn = _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex | |- ~P x e. _V |
|
| 2 | 1 | pwex | |- ~P ~P x e. _V |
| 3 | eqcom | |- ( x = U. y <-> U. y = x ) |
|
| 4 | 3 | rabbii | |- { y e. Top | x = U. y } = { y e. Top | U. y = x } |
| 5 | rabssab | |- { y e. Top | U. y = x } C_ { y | U. y = x } |
|
| 6 | pwpwssunieq | |- { y | U. y = x } C_ ~P ~P x |
|
| 7 | 5 6 | sstri | |- { y e. Top | U. y = x } C_ ~P ~P x |
| 8 | 4 7 | eqsstri | |- { y e. Top | x = U. y } C_ ~P ~P x |
| 9 | 2 8 | ssexi | |- { y e. Top | x = U. y } e. _V |
| 10 | df-topon | |- TopOn = ( x e. _V |-> { y e. Top | x = U. y } ) |
|
| 11 | 9 10 | dmmpti | |- dom TopOn = _V |