This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the group sum; analogue of cnmpt12f which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpcn.j | |- J = ( TopOpen ` G ) |
|
| cnmpt1plusg.p | |- .+ = ( +g ` G ) |
||
| cnmpt1plusg.g | |- ( ph -> G e. TopMnd ) |
||
| cnmpt1plusg.k | |- ( ph -> K e. ( TopOn ` X ) ) |
||
| cnmpt1plusg.a | |- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
||
| cnmpt1plusg.b | |- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
||
| Assertion | cnmpt1plusg | |- ( ph -> ( x e. X |-> ( A .+ B ) ) e. ( K Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | |- J = ( TopOpen ` G ) |
|
| 2 | cnmpt1plusg.p | |- .+ = ( +g ` G ) |
|
| 3 | cnmpt1plusg.g | |- ( ph -> G e. TopMnd ) |
|
| 4 | cnmpt1plusg.k | |- ( ph -> K e. ( TopOn ` X ) ) |
|
| 5 | cnmpt1plusg.a | |- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
|
| 6 | cnmpt1plusg.b | |- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
|
| 7 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 8 | 1 7 | tmdtopon | |- ( G e. TopMnd -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 9 | 3 8 | syl | |- ( ph -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 10 | cnf2 | |- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` G ) ) |
|
| 11 | 4 9 5 10 | syl3anc | |- ( ph -> ( x e. X |-> A ) : X --> ( Base ` G ) ) |
| 12 | 11 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> A e. ( Base ` G ) ) |
| 13 | cnf2 | |- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` G ) ) |
|
| 14 | 4 9 6 13 | syl3anc | |- ( ph -> ( x e. X |-> B ) : X --> ( Base ` G ) ) |
| 15 | 14 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> B e. ( Base ` G ) ) |
| 16 | eqid | |- ( +f ` G ) = ( +f ` G ) |
|
| 17 | 7 2 16 | plusfval | |- ( ( A e. ( Base ` G ) /\ B e. ( Base ` G ) ) -> ( A ( +f ` G ) B ) = ( A .+ B ) ) |
| 18 | 12 15 17 | syl2anc | |- ( ( ph /\ x e. X ) -> ( A ( +f ` G ) B ) = ( A .+ B ) ) |
| 19 | 18 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A ( +f ` G ) B ) ) = ( x e. X |-> ( A .+ B ) ) ) |
| 20 | 1 16 | tmdcn | |- ( G e. TopMnd -> ( +f ` G ) e. ( ( J tX J ) Cn J ) ) |
| 21 | 3 20 | syl | |- ( ph -> ( +f ` G ) e. ( ( J tX J ) Cn J ) ) |
| 22 | 4 5 6 21 | cnmpt12f | |- ( ph -> ( x e. X |-> ( A ( +f ` G ) B ) ) e. ( K Cn J ) ) |
| 23 | 19 22 | eqeltrrd | |- ( ph -> ( x e. X |-> ( A .+ B ) ) e. ( K Cn J ) ) |