This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-thl | |- toHL = ( h e. _V |-> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cthl | |- toHL |
|
| 1 | vh | |- h |
|
| 2 | cvv | |- _V |
|
| 3 | cipo | |- toInc |
|
| 4 | ccss | |- ClSubSp |
|
| 5 | 1 | cv | |- h |
| 6 | 5 4 | cfv | |- ( ClSubSp ` h ) |
| 7 | 6 3 | cfv | |- ( toInc ` ( ClSubSp ` h ) ) |
| 8 | csts | |- sSet |
|
| 9 | coc | |- oc |
|
| 10 | cnx | |- ndx |
|
| 11 | 10 9 | cfv | |- ( oc ` ndx ) |
| 12 | cocv | |- ocv |
|
| 13 | 5 12 | cfv | |- ( ocv ` h ) |
| 14 | 11 13 | cop | |- <. ( oc ` ndx ) , ( ocv ` h ) >. |
| 15 | 7 14 8 | co | |- ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) |
| 16 | 1 2 15 | cmpt | |- ( h e. _V |-> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) ) |
| 17 | 0 16 | wceq | |- toHL = ( h e. _V |-> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) ) |