This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0thincg | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0catg | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. Cat ) |
|
| 2 | ral0 | |- A. x e. (/) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) |
|
| 3 | raleq | |- ( (/) = ( Base ` C ) -> ( A. x e. (/) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) |
|
| 4 | 2 3 | mpbii | |- ( (/) = ( Base ` C ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) |
| 5 | 4 | adantl | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) |
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 8 | 6 7 | isthinc | |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) |
| 9 | 1 5 8 | sylanbrc | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. ThinCat ) |