This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The definition of negation, in terms of -> and F. . (Contributed by Anthony Hart, 15-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tbw-negdf | |- ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 | |- ( -. ph -> ( ph -> F. ) ) |
|
| 2 | ax-1 | |- ( -. ph -> ( ( ph -> F. ) -> -. ph ) ) |
|
| 3 | falim | |- ( F. -> ( ( ph -> F. ) -> -. ph ) ) |
|
| 4 | 2 3 | ja | |- ( ( ph -> F. ) -> ( ( ph -> F. ) -> -. ph ) ) |
| 5 | 4 | pm2.43i | |- ( ( ph -> F. ) -> -. ph ) |
| 6 | 1 5 | impbii | |- ( -. ph <-> ( ph -> F. ) ) |
| 7 | tbw-bijust | |- ( ( -. ph <-> ( ph -> F. ) ) <-> ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) ) |
|
| 8 | 6 7 | mpbi | |- ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) |