This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extension of a permutation is an element of the extended symmetric group. (Contributed by AV, 9-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
||
| Assertion | symgextsymg | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> E e. ( Base ` ( SymGrp ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 2 | symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
|
| 3 | 1 2 | symgextf1o | |- ( ( K e. N /\ Z e. S ) -> E : N -1-1-onto-> N ) |
| 4 | 3 | 3adant1 | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> E : N -1-1-onto-> N ) |
| 5 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 6 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 7 | 5 6 | elsymgbas | |- ( N e. V -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 8 | 7 | 3ad2ant1 | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 9 | 4 8 | mpbird | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> E e. ( Base ` ( SymGrp ` N ) ) ) |