This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extension of a permutation is an element of the extended symmetric group. (Contributed by AV, 9-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | ||
| Assertion | symgextsymg | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 2 | symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | |
| 3 | 1 2 | symgextf1o | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
| 5 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 7 | 5 6 | elsymgbas | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
| 9 | 4 8 | mpbird | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |