This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Completeness Axiom and Suprema
suprnub
Metamath Proof Explorer
Description: An upper bound is not less than the supremum of a nonempty bounded set
of reals. (Contributed by NM , 15-Nov-2004) (Revised by Mario
Carneiro , 6-Sep-2014)
Ref
Expression
Assertion
suprnub
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x ∧ B ∈ ℝ → ¬ B < sup A ℝ < ↔ ∀ z ∈ A ¬ B < z
Proof
Step
Hyp
Ref
Expression
1
suprlub
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x ∧ B ∈ ℝ → B < sup A ℝ < ↔ ∃ z ∈ A B < z
2
1
notbid
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x ∧ B ∈ ℝ → ¬ B < sup A ℝ < ↔ ¬ ∃ z ∈ A B < z
3
ralnex
⊢ ∀ z ∈ A ¬ B < z ↔ ¬ ∃ z ∈ A B < z
4
2 3
bitr4di
⊢ A ⊆ ℝ ∧ A ≠ ∅ ∧ ∃ x ∈ ℝ ∀ y ∈ A y ≤ x ∧ B ∈ ℝ → ¬ B < sup A ℝ < ↔ ∀ z ∈ A ¬ B < z