This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019) (Proof shortened by Wolf Lammen, 25-Nov-2019) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nabbib | |- ( { x | ph } =/= { x | ps } <-> E. x ( ph <-> -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( { x | ph } =/= { x | ps } <-> -. { x | ph } = { x | ps } ) |
|
| 2 | exnal | |- ( E. x -. ( ph <-> ps ) <-> -. A. x ( ph <-> ps ) ) |
|
| 3 | xor3 | |- ( -. ( ph <-> ps ) <-> ( ph <-> -. ps ) ) |
|
| 4 | 3 | exbii | |- ( E. x -. ( ph <-> ps ) <-> E. x ( ph <-> -. ps ) ) |
| 5 | 2 4 | bitr3i | |- ( -. A. x ( ph <-> ps ) <-> E. x ( ph <-> -. ps ) ) |
| 6 | abbib | |- ( { x | ph } = { x | ps } <-> A. x ( ph <-> ps ) ) |
|
| 7 | 5 6 | xchnxbir | |- ( -. { x | ph } = { x | ps } <-> E. x ( ph <-> -. ps ) ) |
| 8 | 1 7 | bitri | |- ( { x | ph } =/= { x | ps } <-> E. x ( ph <-> -. ps ) ) |