This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpr | |- ( ( A e. C /\ B e. D ) -> if ( ph , A , B ) e. { A , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. C -> A e. _V ) |
|
| 2 | elex | |- ( B e. D -> B e. _V ) |
|
| 3 | ifcl | |- ( ( A e. _V /\ B e. _V ) -> if ( ph , A , B ) e. _V ) |
|
| 4 | ifeqor | |- ( if ( ph , A , B ) = A \/ if ( ph , A , B ) = B ) |
|
| 5 | elprg | |- ( if ( ph , A , B ) e. _V -> ( if ( ph , A , B ) e. { A , B } <-> ( if ( ph , A , B ) = A \/ if ( ph , A , B ) = B ) ) ) |
|
| 6 | 4 5 | mpbiri | |- ( if ( ph , A , B ) e. _V -> if ( ph , A , B ) e. { A , B } ) |
| 7 | 3 6 | syl | |- ( ( A e. _V /\ B e. _V ) -> if ( ph , A , B ) e. { A , B } ) |
| 8 | 1 2 7 | syl2an | |- ( ( A e. C /\ B e. D ) -> if ( ph , A , B ) e. { A , B } ) |