This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsq2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( ( A - B ) ^ 2 ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | |- 2 e. CC |
|
| 2 | mulcl | |- ( ( 2 e. CC /\ B e. CC ) -> ( 2 x. B ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( B e. CC -> ( 2 x. B ) e. CC ) |
| 4 | 3 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. B ) e. CC ) |
| 5 | subadd23 | |- ( ( A e. CC /\ B e. CC /\ ( 2 x. B ) e. CC ) -> ( ( A - B ) + ( 2 x. B ) ) = ( A + ( ( 2 x. B ) - B ) ) ) |
|
| 6 | 4 5 | mpd3an3 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + ( 2 x. B ) ) = ( A + ( ( 2 x. B ) - B ) ) ) |
| 7 | 2txmxeqx | |- ( B e. CC -> ( ( 2 x. B ) - B ) = B ) |
|
| 8 | 7 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. B ) - B ) = B ) |
| 9 | 8 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( ( 2 x. B ) - B ) ) = ( A + B ) ) |
| 10 | 6 9 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + ( 2 x. B ) ) = ( A + B ) ) |
| 11 | 10 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) + ( 2 x. B ) ) x. ( A - B ) ) = ( ( A + B ) x. ( A - B ) ) ) |
| 12 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 13 | 12 4 12 | adddird | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) + ( 2 x. B ) ) x. ( A - B ) ) = ( ( ( A - B ) x. ( A - B ) ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |
| 14 | 11 13 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( A - B ) ) = ( ( ( A - B ) x. ( A - B ) ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |
| 15 | subsq | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
|
| 16 | sqval | |- ( ( A - B ) e. CC -> ( ( A - B ) ^ 2 ) = ( ( A - B ) x. ( A - B ) ) ) |
|
| 17 | 12 16 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( A - B ) x. ( A - B ) ) ) |
| 18 | 17 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) ^ 2 ) + ( ( 2 x. B ) x. ( A - B ) ) ) = ( ( ( A - B ) x. ( A - B ) ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |
| 19 | 14 15 18 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( ( A - B ) ^ 2 ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |