This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrngin | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } = ( A i^i B ) ) |
|
| 2 | prssi | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } C_ ( SubRng ` R ) ) |
|
| 3 | prnzg | |- ( A e. ( SubRng ` R ) -> { A , B } =/= (/) ) |
|
| 4 | 3 | adantr | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } =/= (/) ) |
| 5 | subrngint | |- ( ( { A , B } C_ ( SubRng ` R ) /\ { A , B } =/= (/) ) -> |^| { A , B } e. ( SubRng ` R ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } e. ( SubRng ` R ) ) |
| 7 | 1 6 | eqeltrrd | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) ) |