This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | submul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 · 𝐶 ) ) = ( 𝐴 + ( 𝐵 · - 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulneg2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · - 𝐶 ) = - ( 𝐵 · 𝐶 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( 𝐵 · - 𝐶 ) = - ( 𝐵 · 𝐶 ) ) |
| 3 | 2 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( 𝐴 + ( 𝐵 · - 𝐶 ) ) = ( 𝐴 + - ( 𝐵 · 𝐶 ) ) ) |
| 4 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) | |
| 5 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 · 𝐶 ) ∈ ℂ ) → ( 𝐴 + - ( 𝐵 · 𝐶 ) ) = ( 𝐴 − ( 𝐵 · 𝐶 ) ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( 𝐴 + - ( 𝐵 · 𝐶 ) ) = ( 𝐴 − ( 𝐵 · 𝐶 ) ) ) |
| 7 | 3 6 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( 𝐴 − ( 𝐵 · 𝐶 ) ) = ( 𝐴 + ( 𝐵 · - 𝐶 ) ) ) |
| 8 | 7 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 · 𝐶 ) ) = ( 𝐴 + ( 𝐵 · - 𝐶 ) ) ) |