This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference with a product of a sum and a difference. (Contributed by AV, 5-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subaddmulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( E - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( E - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addmulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( B x. C ) ) - ( ( A x. D ) + ( B x. D ) ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( ( A + B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( B x. C ) ) - ( ( A x. D ) + ( B x. D ) ) ) ) |
| 3 | 2 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( E - ( ( A + B ) x. ( C - D ) ) ) = ( E - ( ( ( A x. C ) + ( B x. C ) ) - ( ( A x. D ) + ( B x. D ) ) ) ) ) |
| 4 | simp3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> E e. CC ) |
|
| 5 | simp1l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> A e. CC ) |
|
| 6 | simp2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> C e. CC ) |
|
| 7 | 5 6 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( A x. C ) e. CC ) |
| 8 | simp1r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> B e. CC ) |
|
| 9 | 8 6 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( B x. C ) e. CC ) |
| 10 | 7 9 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( ( A x. C ) + ( B x. C ) ) e. CC ) |
| 11 | simp2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> D e. CC ) |
|
| 12 | 5 11 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( A x. D ) e. CC ) |
| 13 | 8 11 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( B x. D ) e. CC ) |
| 14 | 12 13 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
| 15 | 4 10 14 | subsubd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( E - ( ( ( A x. C ) + ( B x. C ) ) - ( ( A x. D ) + ( B x. D ) ) ) ) = ( ( E - ( ( A x. C ) + ( B x. C ) ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 16 | 4 7 9 | subsub4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( ( E - ( A x. C ) ) - ( B x. C ) ) = ( E - ( ( A x. C ) + ( B x. C ) ) ) ) |
| 17 | 16 | eqcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( E - ( ( A x. C ) + ( B x. C ) ) ) = ( ( E - ( A x. C ) ) - ( B x. C ) ) ) |
| 18 | 17 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( ( E - ( ( A x. C ) + ( B x. C ) ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( E - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 19 | 3 15 18 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ E e. CC ) -> ( E - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( E - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |