This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a sum and a difference. (Contributed by AV, 5-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( B x. C ) ) - ( ( A x. D ) + ( B x. D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
|
| 2 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
|
| 3 | 1 2 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + B ) e. CC ) |
| 4 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
|
| 5 | simprr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> D e. CC ) |
|
| 6 | 3 4 5 | subdid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C - D ) ) = ( ( ( A + B ) x. C ) - ( ( A + B ) x. D ) ) ) |
| 7 | 1 2 4 | adddird | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
| 8 | 1 2 5 | adddird | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. D ) = ( ( A x. D ) + ( B x. D ) ) ) |
| 9 | 7 8 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) x. C ) - ( ( A + B ) x. D ) ) = ( ( ( A x. C ) + ( B x. C ) ) - ( ( A x. D ) + ( B x. D ) ) ) ) |
| 10 | 6 9 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( B x. C ) ) - ( ( A x. D ) + ( B x. D ) ) ) ) |