This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A special difference of a product with a product of a sum and a difference. (Contributed by AV, 5-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulsubaddmulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
|
| 2 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
|
| 3 | 1 2 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) e. CC ) |
| 4 | subaddmulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( B x. C ) e. CC ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
|
| 5 | 3 4 | mpd3an3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 6 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
|
| 7 | 6 2 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. C ) e. CC ) |
| 8 | 3 7 3 | sub32d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = ( ( ( B x. C ) - ( B x. C ) ) - ( A x. C ) ) ) |
| 9 | 3 | subidd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( B x. C ) ) = 0 ) |
| 10 | 9 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( B x. C ) ) - ( A x. C ) ) = ( 0 - ( A x. C ) ) ) |
| 11 | 8 10 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = ( 0 - ( A x. C ) ) ) |
| 12 | df-neg | |- -u ( A x. C ) = ( 0 - ( A x. C ) ) |
|
| 13 | 11 12 | eqtr4di | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = -u ( A x. C ) ) |
| 14 | 13 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 15 | 7 | negcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> -u ( A x. C ) e. CC ) |
| 16 | simprr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> D e. CC ) |
|
| 17 | 6 16 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. D ) e. CC ) |
| 18 | 1 16 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) e. CC ) |
| 19 | 17 18 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
| 20 | 15 19 | addcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) + -u ( A x. C ) ) ) |
| 21 | 19 7 | negsubd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. D ) + ( B x. D ) ) + -u ( A x. C ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |
| 22 | 20 21 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |
| 23 | 14 22 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |
| 24 | 5 23 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |