This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subaddeqd.a | |- ( ph -> A e. CC ) |
|
| subaddeqd.b | |- ( ph -> B e. CC ) |
||
| subaddeqd.c | |- ( ph -> C e. CC ) |
||
| subaddeqd.d | |- ( ph -> D e. CC ) |
||
| subaddeqd.1 | |- ( ph -> ( A + B ) = ( C + D ) ) |
||
| Assertion | subaddeqd | |- ( ph -> ( A - D ) = ( C - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddeqd.a | |- ( ph -> A e. CC ) |
|
| 2 | subaddeqd.b | |- ( ph -> B e. CC ) |
|
| 3 | subaddeqd.c | |- ( ph -> C e. CC ) |
|
| 4 | subaddeqd.d | |- ( ph -> D e. CC ) |
|
| 5 | subaddeqd.1 | |- ( ph -> ( A + B ) = ( C + D ) ) |
|
| 6 | 5 | oveq1d | |- ( ph -> ( ( A + B ) - ( D + B ) ) = ( ( C + D ) - ( D + B ) ) ) |
| 7 | 3 4 | addcomd | |- ( ph -> ( C + D ) = ( D + C ) ) |
| 8 | 7 | oveq1d | |- ( ph -> ( ( C + D ) - ( D + B ) ) = ( ( D + C ) - ( D + B ) ) ) |
| 9 | 6 8 | eqtrd | |- ( ph -> ( ( A + B ) - ( D + B ) ) = ( ( D + C ) - ( D + B ) ) ) |
| 10 | 1 4 2 | pnpcan2d | |- ( ph -> ( ( A + B ) - ( D + B ) ) = ( A - D ) ) |
| 11 | 4 3 2 | pnpcand | |- ( ph -> ( ( D + C ) - ( D + B ) ) = ( C - B ) ) |
| 12 | 9 10 11 | 3eqtr3d | |- ( ph -> ( A - D ) = ( C - B ) ) |