This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subaddeqd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| subaddeqd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subaddeqd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| subaddeqd.d | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| subaddeqd.1 | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | ||
| Assertion | subaddeqd | ⊢ ( 𝜑 → ( 𝐴 − 𝐷 ) = ( 𝐶 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddeqd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | subaddeqd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subaddeqd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | subaddeqd.d | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | subaddeqd.1 | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) ) |
| 7 | 3 4 | addcomd | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 8 | 7 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) ) |
| 9 | 6 8 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) ) |
| 10 | 1 4 2 | pnpcan2d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐴 − 𝐷 ) ) |
| 11 | 4 3 2 | pnpcand | ⊢ ( 𝜑 → ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐶 − 𝐵 ) ) |
| 12 | 9 10 11 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 − 𝐷 ) = ( 𝐶 − 𝐵 ) ) |