This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subadd4b.1 | |- ( ph -> A e. CC ) |
|
| subadd4b.2 | |- ( ph -> B e. CC ) |
||
| subadd4b.3 | |- ( ph -> C e. CC ) |
||
| subadd4b.4 | |- ( ph -> D e. CC ) |
||
| Assertion | subadd4b | |- ( ph -> ( ( A - B ) + ( C - D ) ) = ( ( A - D ) + ( C - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subadd4b.1 | |- ( ph -> A e. CC ) |
|
| 2 | subadd4b.2 | |- ( ph -> B e. CC ) |
|
| 3 | subadd4b.3 | |- ( ph -> C e. CC ) |
|
| 4 | subadd4b.4 | |- ( ph -> D e. CC ) |
|
| 5 | 1 2 4 3 | subadd4d | |- ( ph -> ( ( A - B ) - ( D - C ) ) = ( ( A + C ) - ( B + D ) ) ) |
| 6 | 1 2 | subcld | |- ( ph -> ( A - B ) e. CC ) |
| 7 | 6 4 3 | subsub2d | |- ( ph -> ( ( A - B ) - ( D - C ) ) = ( ( A - B ) + ( C - D ) ) ) |
| 8 | 2 4 | addcomd | |- ( ph -> ( B + D ) = ( D + B ) ) |
| 9 | 8 | oveq2d | |- ( ph -> ( ( A + C ) - ( B + D ) ) = ( ( A + C ) - ( D + B ) ) ) |
| 10 | 1 3 4 2 | addsub4d | |- ( ph -> ( ( A + C ) - ( D + B ) ) = ( ( A - D ) + ( C - B ) ) ) |
| 11 | 9 10 | eqtrd | |- ( ph -> ( ( A + C ) - ( B + D ) ) = ( ( A - D ) + ( C - B ) ) ) |
| 12 | 5 7 11 | 3eqtr3d | |- ( ph -> ( ( A - B ) + ( C - D ) ) = ( ( A - D ) + ( C - B ) ) ) |