This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restuni.1 | |- X = U. J |
|
| Assertion | stoig | |- ( ( J e. Top /\ A C_ X ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restuni.1 | |- X = U. J |
|
| 2 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 3 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
|
| 4 | 2 3 | sylanb | |- ( ( J e. Top /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
| 5 | eqid | |- { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } |
|
| 6 | 5 | eltpsg | |- ( ( J |`t A ) e. ( TopOn ` A ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp ) |
| 7 | 4 6 | syl | |- ( ( J e. Top /\ A C_ X ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp ) |