This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eltpsi.k | |- K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , J >. } |
|
| Assertion | eltpsg | |- ( J e. ( TopOn ` A ) -> K e. TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltpsi.k | |- K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , J >. } |
|
| 2 | basendxlttsetndx | |- ( Base ` ndx ) < ( TopSet ` ndx ) |
|
| 3 | tsetndxnn | |- ( TopSet ` ndx ) e. NN |
|
| 4 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 5 | 1 2 3 4 | 2strop | |- ( J e. ( TopOn ` A ) -> J = ( TopSet ` K ) ) |
| 6 | toponmax | |- ( J e. ( TopOn ` A ) -> A e. J ) |
|
| 7 | 1 2 3 | 2strbas | |- ( A e. J -> A = ( Base ` K ) ) |
| 8 | 6 7 | syl | |- ( J e. ( TopOn ` A ) -> A = ( Base ` K ) ) |
| 9 | 8 | fveq2d | |- ( J e. ( TopOn ` A ) -> ( TopOn ` A ) = ( TopOn ` ( Base ` K ) ) ) |
| 10 | 5 9 | eleq12d | |- ( J e. ( TopOn ` A ) -> ( J e. ( TopOn ` A ) <-> ( TopSet ` K ) e. ( TopOn ` ( Base ` K ) ) ) ) |
| 11 | 10 | ibi | |- ( J e. ( TopOn ` A ) -> ( TopSet ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 12 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 13 | eqid | |- ( TopSet ` K ) = ( TopSet ` K ) |
|
| 14 | 12 13 | tsettps | |- ( ( TopSet ` K ) e. ( TopOn ` ( Base ` K ) ) -> K e. TopSp ) |
| 15 | 11 14 | syl | |- ( J e. ( TopOn ` A ) -> K e. TopSp ) |