This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subsets of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sstp | |- ( A C_ { B , C , D } <-> ( ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) \/ ( ( A = { D } \/ A = { B , D } ) \/ ( A = { C , D } \/ A = { B , C , D } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp | |- { B , C , D } = ( { B , C } u. { D } ) |
|
| 2 | 1 | sseq2i | |- ( A C_ { B , C , D } <-> A C_ ( { B , C } u. { D } ) ) |
| 3 | 0ss | |- (/) C_ A |
|
| 4 | 3 | biantrur | |- ( A C_ ( { B , C } u. { D } ) <-> ( (/) C_ A /\ A C_ ( { B , C } u. { D } ) ) ) |
| 5 | ssunsn2 | |- ( ( (/) C_ A /\ A C_ ( { B , C } u. { D } ) ) <-> ( ( (/) C_ A /\ A C_ { B , C } ) \/ ( ( (/) u. { D } ) C_ A /\ A C_ ( { B , C } u. { D } ) ) ) ) |
|
| 6 | 3 | biantrur | |- ( A C_ { B , C } <-> ( (/) C_ A /\ A C_ { B , C } ) ) |
| 7 | sspr | |- ( A C_ { B , C } <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |
|
| 8 | 6 7 | bitr3i | |- ( ( (/) C_ A /\ A C_ { B , C } ) <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |
| 9 | uncom | |- ( (/) u. { D } ) = ( { D } u. (/) ) |
|
| 10 | un0 | |- ( { D } u. (/) ) = { D } |
|
| 11 | 9 10 | eqtri | |- ( (/) u. { D } ) = { D } |
| 12 | 11 | sseq1i | |- ( ( (/) u. { D } ) C_ A <-> { D } C_ A ) |
| 13 | uncom | |- ( { B , C } u. { D } ) = ( { D } u. { B , C } ) |
|
| 14 | 13 | sseq2i | |- ( A C_ ( { B , C } u. { D } ) <-> A C_ ( { D } u. { B , C } ) ) |
| 15 | 12 14 | anbi12i | |- ( ( ( (/) u. { D } ) C_ A /\ A C_ ( { B , C } u. { D } ) ) <-> ( { D } C_ A /\ A C_ ( { D } u. { B , C } ) ) ) |
| 16 | ssunpr | |- ( ( { D } C_ A /\ A C_ ( { D } u. { B , C } ) ) <-> ( ( A = { D } \/ A = ( { D } u. { B } ) ) \/ ( A = ( { D } u. { C } ) \/ A = ( { D } u. { B , C } ) ) ) ) |
|
| 17 | uncom | |- ( { D } u. { B } ) = ( { B } u. { D } ) |
|
| 18 | df-pr | |- { B , D } = ( { B } u. { D } ) |
|
| 19 | 17 18 | eqtr4i | |- ( { D } u. { B } ) = { B , D } |
| 20 | 19 | eqeq2i | |- ( A = ( { D } u. { B } ) <-> A = { B , D } ) |
| 21 | 20 | orbi2i | |- ( ( A = { D } \/ A = ( { D } u. { B } ) ) <-> ( A = { D } \/ A = { B , D } ) ) |
| 22 | uncom | |- ( { D } u. { C } ) = ( { C } u. { D } ) |
|
| 23 | df-pr | |- { C , D } = ( { C } u. { D } ) |
|
| 24 | 22 23 | eqtr4i | |- ( { D } u. { C } ) = { C , D } |
| 25 | 24 | eqeq2i | |- ( A = ( { D } u. { C } ) <-> A = { C , D } ) |
| 26 | 1 13 | eqtr2i | |- ( { D } u. { B , C } ) = { B , C , D } |
| 27 | 26 | eqeq2i | |- ( A = ( { D } u. { B , C } ) <-> A = { B , C , D } ) |
| 28 | 25 27 | orbi12i | |- ( ( A = ( { D } u. { C } ) \/ A = ( { D } u. { B , C } ) ) <-> ( A = { C , D } \/ A = { B , C , D } ) ) |
| 29 | 21 28 | orbi12i | |- ( ( ( A = { D } \/ A = ( { D } u. { B } ) ) \/ ( A = ( { D } u. { C } ) \/ A = ( { D } u. { B , C } ) ) ) <-> ( ( A = { D } \/ A = { B , D } ) \/ ( A = { C , D } \/ A = { B , C , D } ) ) ) |
| 30 | 15 16 29 | 3bitri | |- ( ( ( (/) u. { D } ) C_ A /\ A C_ ( { B , C } u. { D } ) ) <-> ( ( A = { D } \/ A = { B , D } ) \/ ( A = { C , D } \/ A = { B , C , D } ) ) ) |
| 31 | 8 30 | orbi12i | |- ( ( ( (/) C_ A /\ A C_ { B , C } ) \/ ( ( (/) u. { D } ) C_ A /\ A C_ ( { B , C } u. { D } ) ) ) <-> ( ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) \/ ( ( A = { D } \/ A = { B , D } ) \/ ( A = { C , D } \/ A = { B , C , D } ) ) ) ) |
| 32 | 5 31 | bitri | |- ( ( (/) C_ A /\ A C_ ( { B , C } u. { D } ) ) <-> ( ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) \/ ( ( A = { D } \/ A = { B , D } ) \/ ( A = { C , D } \/ A = { B , C , D } ) ) ) ) |
| 33 | 2 4 32 | 3bitri | |- ( A C_ { B , C , D } <-> ( ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) \/ ( ( A = { D } \/ A = { B , D } ) \/ ( A = { C , D } \/ A = { B , C , D } ) ) ) ) |