This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrnres | |- ( B C_ ran ( C |` A ) <-> ran ( C i^i ( A X. B ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 | |- ( C i^i ( A X. B ) ) C_ ( A X. B ) |
|
| 2 | 1 | rnssi | |- ran ( C i^i ( A X. B ) ) C_ ran ( A X. B ) |
| 3 | rnxpss | |- ran ( A X. B ) C_ B |
|
| 4 | 2 3 | sstri | |- ran ( C i^i ( A X. B ) ) C_ B |
| 5 | eqss | |- ( ran ( C i^i ( A X. B ) ) = B <-> ( ran ( C i^i ( A X. B ) ) C_ B /\ B C_ ran ( C i^i ( A X. B ) ) ) ) |
|
| 6 | 4 5 | mpbiran | |- ( ran ( C i^i ( A X. B ) ) = B <-> B C_ ran ( C i^i ( A X. B ) ) ) |
| 7 | inxpssres | |- ( C i^i ( A X. B ) ) C_ ( C |` A ) |
|
| 8 | 7 | rnssi | |- ran ( C i^i ( A X. B ) ) C_ ran ( C |` A ) |
| 9 | sstr | |- ( ( B C_ ran ( C i^i ( A X. B ) ) /\ ran ( C i^i ( A X. B ) ) C_ ran ( C |` A ) ) -> B C_ ran ( C |` A ) ) |
|
| 10 | 8 9 | mpan2 | |- ( B C_ ran ( C i^i ( A X. B ) ) -> B C_ ran ( C |` A ) ) |
| 11 | ssel | |- ( B C_ ran ( C |` A ) -> ( y e. B -> y e. ran ( C |` A ) ) ) |
|
| 12 | vex | |- y e. _V |
|
| 13 | 12 | elrn2 | |- ( y e. ran ( C |` A ) <-> E. x <. x , y >. e. ( C |` A ) ) |
| 14 | 11 13 | imbitrdi | |- ( B C_ ran ( C |` A ) -> ( y e. B -> E. x <. x , y >. e. ( C |` A ) ) ) |
| 15 | 14 | ancld | |- ( B C_ ran ( C |` A ) -> ( y e. B -> ( y e. B /\ E. x <. x , y >. e. ( C |` A ) ) ) ) |
| 16 | 12 | elrn2 | |- ( y e. ran ( C i^i ( A X. B ) ) <-> E. x <. x , y >. e. ( C i^i ( A X. B ) ) ) |
| 17 | opelinxp | |- ( <. x , y >. e. ( C i^i ( A X. B ) ) <-> ( ( x e. A /\ y e. B ) /\ <. x , y >. e. C ) ) |
|
| 18 | 12 | opelresi | |- ( <. x , y >. e. ( C |` A ) <-> ( x e. A /\ <. x , y >. e. C ) ) |
| 19 | 18 | bianassc | |- ( ( y e. B /\ <. x , y >. e. ( C |` A ) ) <-> ( ( x e. A /\ y e. B ) /\ <. x , y >. e. C ) ) |
| 20 | 17 19 | bitr4i | |- ( <. x , y >. e. ( C i^i ( A X. B ) ) <-> ( y e. B /\ <. x , y >. e. ( C |` A ) ) ) |
| 21 | 20 | exbii | |- ( E. x <. x , y >. e. ( C i^i ( A X. B ) ) <-> E. x ( y e. B /\ <. x , y >. e. ( C |` A ) ) ) |
| 22 | 19.42v | |- ( E. x ( y e. B /\ <. x , y >. e. ( C |` A ) ) <-> ( y e. B /\ E. x <. x , y >. e. ( C |` A ) ) ) |
|
| 23 | 16 21 22 | 3bitri | |- ( y e. ran ( C i^i ( A X. B ) ) <-> ( y e. B /\ E. x <. x , y >. e. ( C |` A ) ) ) |
| 24 | 15 23 | imbitrrdi | |- ( B C_ ran ( C |` A ) -> ( y e. B -> y e. ran ( C i^i ( A X. B ) ) ) ) |
| 25 | 24 | ssrdv | |- ( B C_ ran ( C |` A ) -> B C_ ran ( C i^i ( A X. B ) ) ) |
| 26 | 10 25 | impbii | |- ( B C_ ran ( C i^i ( A X. B ) ) <-> B C_ ran ( C |` A ) ) |
| 27 | 6 26 | bitr2i | |- ( B C_ ran ( C |` A ) <-> ran ( C i^i ( A X. B ) ) = B ) |