This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssprss | |- ( ( A e. V /\ B e. W ) -> ( { A , B } C_ { C , D } <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg | |- ( ( A e. V /\ B e. W ) -> ( ( A e. { C , D } /\ B e. { C , D } ) <-> { A , B } C_ { C , D } ) ) |
|
| 2 | elprg | |- ( A e. V -> ( A e. { C , D } <-> ( A = C \/ A = D ) ) ) |
|
| 3 | elprg | |- ( B e. W -> ( B e. { C , D } <-> ( B = C \/ B = D ) ) ) |
|
| 4 | 2 3 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( A e. { C , D } /\ B e. { C , D } ) <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |
| 5 | 1 4 | bitr3d | |- ( ( A e. V /\ B e. W ) -> ( { A , B } C_ { C , D } <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |