This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 . (Contributed by NM, 9-Dec-2003) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hsupval | |- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | 1 | pwex | |- ~P ~H e. _V |
| 3 | 2 | elpw2 | |- ( A e. ~P ~P ~H <-> A C_ ~P ~H ) |
| 4 | unieq | |- ( x = A -> U. x = U. A ) |
|
| 5 | 4 | fveq2d | |- ( x = A -> ( _|_ ` U. x ) = ( _|_ ` U. A ) ) |
| 6 | 5 | fveq2d | |- ( x = A -> ( _|_ ` ( _|_ ` U. x ) ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
| 7 | df-chsup | |- \/H = ( x e. ~P ~P ~H |-> ( _|_ ` ( _|_ ` U. x ) ) ) |
|
| 8 | fvex | |- ( _|_ ` ( _|_ ` U. A ) ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( A e. ~P ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
| 10 | 3 9 | sylbir | |- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |