This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class abstractions in a subclass relationship. Reverse direction of ss2ab which requires fewer axioms. (Contributed by SN, 2-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2abim | |- ( A. x ( ph -> ps ) -> { x | ph } C_ { x | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbim | |- ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
|
| 2 | 1 | alrimiv | |- ( A. x ( ph -> ps ) -> A. y ( [ y / x ] ph -> [ y / x ] ps ) ) |
| 3 | df-ss | |- ( { x | ph } C_ { x | ps } <-> A. y ( y e. { x | ph } -> y e. { x | ps } ) ) |
|
| 4 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 5 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 6 | 4 5 | imbi12i | |- ( ( y e. { x | ph } -> y e. { x | ps } ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |
| 7 | 6 | albii | |- ( A. y ( y e. { x | ph } -> y e. { x | ps } ) <-> A. y ( [ y / x ] ph -> [ y / x ] ps ) ) |
| 8 | 3 7 | bitr2i | |- ( A. y ( [ y / x ] ph -> [ y / x ] ps ) <-> { x | ph } C_ { x | ps } ) |
| 9 | 2 8 | sylib | |- ( A. x ( ph -> ps ) -> { x | ph } C_ { x | ps } ) |