This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | srngstr.r | |- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| Assertion | srngbase | |- ( B e. X -> B = ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngstr.r | |- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| 2 | 1 | srngstr | |- R Struct <. 1 , 4 >. |
| 3 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 4 | snsstp1 | |- { <. ( Base ` ndx ) , B >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
|
| 5 | ssun1 | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| 6 | 5 1 | sseqtrri | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } C_ R |
| 7 | 4 6 | sstri | |- { <. ( Base ` ndx ) , B >. } C_ R |
| 8 | 2 3 7 | strfv | |- ( B e. X -> B = ( Base ` R ) ) |