This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a squarefree number is at most 1. (Contributed by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqfpc | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 /\ P e. Prime ) -> ( P pCnt A ) <_ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issqf | |- ( A e. NN -> ( ( mmu ` A ) =/= 0 <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |
|
| 2 | 1 | biimpa | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> A. p e. Prime ( p pCnt A ) <_ 1 ) |
| 3 | oveq1 | |- ( p = P -> ( p pCnt A ) = ( P pCnt A ) ) |
|
| 4 | 3 | breq1d | |- ( p = P -> ( ( p pCnt A ) <_ 1 <-> ( P pCnt A ) <_ 1 ) ) |
| 5 | 4 | rspccv | |- ( A. p e. Prime ( p pCnt A ) <_ 1 -> ( P e. Prime -> ( P pCnt A ) <_ 1 ) ) |
| 6 | 2 5 | syl | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> ( P e. Prime -> ( P pCnt A ) <_ 1 ) ) |
| 7 | 6 | 3impia | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 /\ P e. Prime ) -> ( P pCnt A ) <_ 1 ) |