This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 18-Jan-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spthonepeq | |- ( F ( A ( SPathsOn ` G ) B ) P -> ( A = B <-> ( # ` F ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | spthonprop | |- ( F ( A ( SPathsOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) |
| 3 | 1 | istrlson | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
| 4 | 3 | 3adantl1 | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
| 5 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 6 | 5 | a1i | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) ) |
| 7 | 4 6 | anbi12d | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) /\ ( F ( Trails ` G ) P /\ Fun `' P ) ) ) ) |
| 8 | 1 | wlkonprop | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 9 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 10 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 11 | df-f1 | |- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) ) |
|
| 12 | eqeq2 | |- ( A = B -> ( ( P ` 0 ) = A <-> ( P ` 0 ) = B ) ) |
|
| 13 | eqtr3 | |- ( ( ( P ` ( # ` F ) ) = B /\ ( P ` 0 ) = B ) -> ( P ` ( # ` F ) ) = ( P ` 0 ) ) |
|
| 14 | elnn0uz | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
|
| 15 | eluzfz2 | |- ( ( # ` F ) e. ( ZZ>= ` 0 ) -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
|
| 16 | 14 15 | sylbi | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 17 | 0elfz | |- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
|
| 18 | 16 17 | jca | |- ( ( # ` F ) e. NN0 -> ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 19 | f1veqaeq | |- ( ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( # ` F ) = 0 ) ) |
|
| 20 | 18 19 | sylan2 | |- ( ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( # ` F ) = 0 ) ) |
| 21 | 20 | ex | |- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( ( # ` F ) e. NN0 -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( # ` F ) = 0 ) ) ) |
| 22 | 21 | com13 | |- ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) |
| 23 | 13 22 | syl | |- ( ( ( P ` ( # ` F ) ) = B /\ ( P ` 0 ) = B ) -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) |
| 24 | 23 | expcom | |- ( ( P ` 0 ) = B -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) ) |
| 25 | 12 24 | biimtrdi | |- ( A = B -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) ) ) |
| 26 | 25 | com15 | |- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) |
| 27 | 11 26 | sylbir | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) |
| 28 | 27 | expcom | |- ( Fun `' P -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) ) |
| 29 | 28 | com15 | |- ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( Fun `' P -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) ) |
| 30 | 9 10 29 | sylc | |- ( F ( Walks ` G ) P -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( Fun `' P -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) |
| 31 | 30 | 3imp1 | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ Fun `' P ) -> ( A = B -> ( # ` F ) = 0 ) ) |
| 32 | fveqeq2 | |- ( ( # ` F ) = 0 -> ( ( P ` ( # ` F ) ) = B <-> ( P ` 0 ) = B ) ) |
|
| 33 | 32 | anbi2d | |- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) ) ) |
| 34 | eqtr2 | |- ( ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) -> A = B ) |
|
| 35 | 33 34 | biimtrdi | |- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> A = B ) ) |
| 36 | 35 | com12 | |- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> A = B ) ) |
| 37 | 36 | 3adant1 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> A = B ) ) |
| 38 | 37 | adantr | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ Fun `' P ) -> ( ( # ` F ) = 0 -> A = B ) ) |
| 39 | 31 38 | impbid | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ Fun `' P ) -> ( A = B <-> ( # ` F ) = 0 ) ) |
| 40 | 39 | ex | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( Fun `' P -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
| 41 | 40 | 3ad2ant3 | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( Fun `' P -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
| 42 | 8 41 | syl | |- ( F ( A ( WalksOn ` G ) B ) P -> ( Fun `' P -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
| 43 | 42 | adantld | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
| 44 | 43 | adantr | |- ( ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) -> ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
| 45 | 44 | imp | |- ( ( ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) /\ ( F ( Trails ` G ) P /\ Fun `' P ) ) -> ( A = B <-> ( # ` F ) = 0 ) ) |
| 46 | 7 45 | biimtrdi | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
| 47 | 46 | 3impia | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( A = B <-> ( # ` F ) = 0 ) ) |
| 48 | 2 47 | syl | |- ( F ( A ( SPathsOn ` G ) B ) P -> ( A = B <-> ( # ` F ) = 0 ) ) |